When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  3. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.

  4. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    The sum and difference of two absolutely continuous functions are also absolutely continuous. If the two functions are defined on a bounded closed interval, then their product is also absolutely continuous. [4] If an absolutely continuous function is defined on a bounded closed interval and is nowhere zero then its reciprocal is absolutely ...

  5. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue). In calculus , the extreme value theorem states that if a real-valued function f {\displaystyle f} is continuous on the closed and bounded interval [ a , b ] {\displaystyle [a,b]} , then f {\displaystyle f} must attain a maximum and a ...

  6. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.

  7. Continuous function (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuous_function_(set...

    Alternatively, if s is an increasing function then s is continuous if s: γ → range(s) is a continuous function when the sets are each equipped with the order topology. These continuous functions are often used in cofinalities and cardinal numbers. A normal function is a function that is both continuous and strictly increasing.

  8. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  9. Function of a real variable - Wikipedia

    en.wikipedia.org/wiki/Function_of_a_real_variable

    For many commonly used real functions, the domain is the whole set of real numbers, and the function is continuous and differentiable at every point of the domain. One says that these functions are defined, continuous and differentiable everywhere. This is the case of: All polynomial functions, including constant functions and linear functions