Search results
Results From The WOW.Com Content Network
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, [4] is a chemical compound, an oxide of nitrogen with the formula N 2 O. At room temperature, it is a colourless non-flammable gas, and has a slightly sweet scent and taste. [4]
z + is the charge number of the cation; z − is the charge number of the anion; e is the elementary charge, equal to 1.6022 × 10 −19 C; ε 0 is the permittivity of free space, equal to 8.854 × 10 −12 C 2 J −1 m −1; r 0 is the nearest-neighbor distance between ions; and
The formal charges on the right comply with electronegativities, which implies an added ionic bonding contribution. Indeed, the estimated N−N and N−O bond orders are 2.76 and 1.9, respectively, [ 7 ] approaching the formula of integer bond orders that would include the ionic contribution explicitly as a bond (in green):
The association of the cation bonding electrons with the anion in the ionic model is purely formal. There is no change in physical locations of any electrons, and there is no change in the bond valence. The terms "anion" and "cation" in the bond valence model are defined in terms of the bond topology, not the chemical properties of the atoms.
There are two possible structures for hydrogen cyanide, HCN and CNH, differing only as to the position of the hydrogen atom. The structure with hydrogen attached to nitrogen, CNH, leads to formal charges of -1 on carbon and +1 on nitrogen, which would be partially compensated for by the electronegativity of nitrogen and Pauling calculated the net charges on H, N and C as -0.79, +0.75 and +0.04 ...
This is because there is a thermodynamic preference for the nitrate ion to bond covalently with such metals rather than form an ionic structure. Such compounds must be prepared in anhydrous conditions, since the nitrate ion is a much weaker ligand than water, and if water is present the simple nitrate of the hydrated metal ion will form.
The nitrite ion has the chemical formula NO − 2. Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. [1] The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name nitrite also refers to organic compounds having the –ONO group, which are esters of nitrous acid.