Search results
Results From The WOW.Com Content Network
In meiotic sporogenesis, a diploid spore mother cell within the sporangium undergoes meiosis, producing a tetrad of haploid spores. In organisms that are heterosporous, two types of spores occur: Microsporangia produce male microspores, and megasporangia produce female megaspores. In megasporogenesis, often three of the four spores degenerate ...
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Glucose + 2 NAD + + 2 P i + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H + + 2 H 2 O + energy. Starting with glucose, 1 ATP is used to donate a phosphate to glucose to produce glucose 6-phosphate. Glycogen can be converted into glucose 6-phosphate as well with the help of glycogen phosphorylase.
Fermentation is another process by which cells can extract energy from glucose. It is not a form of cellular respiration, but it does generate ATP, break down glucose, and produce waste products. Fermentation, like aerobic respiration, begins by breaking glucose into two pyruvate molecules.
It occurs in the liver, adipose tissue, adrenal cortex, testis, mammary glands, phagocytes, and red blood cells. [12] It produces products that are used in other cell processes, while reducing NADP to NADPH. [12] [14] This pathway is regulated through changes in the activity of glucose-6-phosphate dehydrogenase. [14]
Neurons, cells of the renal medulla and erythrocytes depend on glucose for their energy production. [70] In adult humans, there is about 18 g (0.63 oz) of glucose, [71] of which about 4 g (0.14 oz) is present in the blood. [72] Approximately 180–220 g (6.3–7.8 oz) of glucose is produced in the liver of an adult in 24 hours. [71]
In microorganisms, the glyoxylate cycle allows cells to use two carbons (C2 compounds), such as acetate, to satisfy cellular carbon requirements when simple sugars such as glucose or fructose are not available. [2] The cycle is generally assumed to be absent in animals, with the exception of nematodes at the early stages of embryogenesis.
The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]