Search results
Results From The WOW.Com Content Network
The solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance. [ 5 ] Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of ...
The elliptic cones intersect the sphere in spherical conics. Conical coordinates , sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r ) and by two families of perpendicular elliptic cones, aligned along the z - and x ...
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.
More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface. [4] [5]
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
Download as PDF; Printable version ... hide. A spherical cone may mean: a hypercone in 4D; a spherical sector in 3D; See also. Spherical conic This page was last ...
In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.
The analog of a conic section on the sphere is a spherical conic, a quartic curve which can be defined in several equivalent ways. The intersection of a sphere with a quadratic cone whose vertex is the sphere center; The intersection of a sphere with an elliptic or hyperbolic cylinder whose axis passes through the sphere center