When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Barlow's formula - Wikipedia

    en.wikipedia.org/wiki/Barlow's_formula

    Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow , an English mathematician .

  3. English Engineering Units - Wikipedia

    en.wikipedia.org/wiki/English_Engineering_Units

    Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).

  4. Comparison of the imperial and US customary measurement ...

    en.wikipedia.org/wiki/Comparison_of_the_imperial...

    The imperial system has a hundredweight, defined as eight stone of 14 lb each, or 112 lb (50.802 345 44 kg), whereas a US hundredweight is 100 lb (45.359 237 kg). In both systems, 20 hundredweights make a ton. In the US, the terms long ton (2240 lb, 1 016.046 9088 kg) and short ton (2000 lb; 907.184 74 kg) are used.

  5. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    In practical engineering applications for cylinders (pipes and tubes), hoop stress is often re-arranged for pressure, and is called Barlow's formula. Inch-pound-second system (IPS) units for P are pounds-force per square inch (psi). Units for t, and d are inches (in). SI units for P are pascals (Pa), while t and d=2r are in meters (m).

  6. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    See Weight for detail of mass/weight distinction and conversion. Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound.

  7. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Pipe (fluid conveyance) - Wikipedia

    en.wikipedia.org/wiki/Pipe_(fluid_conveyance)

    A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases , slurries, powders and masses of small solids. It can also be used for structural applications; a hollow pipe is far stiffer per unit weight than the solid members.