Search results
Results From The WOW.Com Content Network
In digital circuits, an adder–subtractor is a circuit that is capable of adding or subtracting numbers (in particular, binary). Below is a circuit that adds or subtracts depending on a control signal. It is also possible to construct a circuit that performs both addition and subtraction at the same time. [1]
The gate delay can easily be calculated by inspection of the full adder circuit. Each full adder requires three levels of logic. In a 32-bit ripple-carry adder, there are 32 full adders, so the critical path (worst case) delay is 3 (from input to carry in first adder) + 31 × 2 (for carry propagation in latter adders) = 65 gate delays. [6]
The serial binary subtractor operates the same as the serial binary adder, except the subtracted number is converted to its two's complement before being added. . Alternatively, the number to be subtracted is converted to its ones' complement, by inverting its bits, and the carry flip-flop is initialized to a 1 instead of to 0
The full subtractor is a combinational circuit which is used to perform subtraction of three input bits: the minuend , subtrahend , and borrow in . The full subtractor generates two output bits: the difference D {\displaystyle D} and borrow out B out {\displaystyle B_{\text{out}}} .
The XOR is used normally within a basic full adder circuit; the OR is an alternative option (for a carry-lookahead only), which is far simpler in transistor-count terms. For the example provided, the logic for the generate and propagate values are given below. The numeric value determines the signal from the circuit above, starting from 0 on ...
A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.
For speed, the "reduce partial product" stages are typically implemented as a carry-save adder composed of compressors and the "compute final product" step is implemented as a fast adder (something faster than ripple-carry). Many fast multipliers use full adders as compressors ("3:2 compressors") implemented in static CMOS.
Electronic adders and those related to Adder (electronics) ... Adder (electronics) Adder–subtractor; Additron tube; B. Brent–Kung adder; C. Carry-lookahead adder;