When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Myofibril - Wikipedia

    en.wikipedia.org/wiki/Myofibril

    The protein complex composed of actin and myosin is sometimes referred to as actomyosin. In striated skeletal and cardiac muscle tissue the actin and myosin filaments each have a specific and constant length on the order of a few micrometers, far less than the length of the elongated muscle cell (a few millimeters in the case of human skeletal ...

  3. Myofilament - Wikipedia

    en.wikipedia.org/wiki/Myofilament

    The protein complex composed of actin and myosin, contractile proteins, is sometimes referred to as actomyosin.In striated skeletal and cardiac muscle, the actin and myosin filaments each have a specific and constant length in the order of a few micrometers, far less than the length of the elongated muscle cell (up to several centimeters in some skeletal muscle cells). [5]

  4. Muscle cell - Wikipedia

    en.wikipedia.org/wiki/Muscle_cell

    Fusion depends on muscle-specific proteins known as fusogens called myomaker and myomerger. [13] A striated muscle fiber contains myofibrils consisting of long protein chains of myofilaments. There are three types of myofilaments: thin, thick, and elastic that work together to produce a muscle contraction. [14]

  5. Costamere - Wikipedia

    en.wikipedia.org/wiki/Costamere

    The dystrophin-associated protein complex, also referred to as the dystrophin-associated glycoprotein complex (DGC or DAGC), [2] contains various integral and peripheral membrane proteins such as dystroglycans and sarcoglycans, which are thought to be responsible for linking the internal cytoskeletal system of individual myofibers to structural ...

  6. Sliding filament theory - Wikipedia

    en.wikipedia.org/wiki/Sliding_filament_theory

    Cross-bridge theory states that actin and myosin form a protein complex (classically called actomyosin) by attachment of myosin head on the actin filament, thereby forming a sort of cross-bridge between the two filaments. The sliding filament theory is a widely accepted explanation of the mechanism that underlies muscle contraction.

  7. Microfilament - Wikipedia

    en.wikipedia.org/wiki/Microfilament

    The following steps describe one force-generating cycle of an actoclampin molecular motor: The polymerization cofactor profilin and the ATP·actin combine to form a profilin-ATP-actin complex that then binds to the end-tracking unit; The cofactor and monomer are transferred to the barbed-end of an actin already clamped filament

  8. Isotropic bands - Wikipedia

    en.wikipedia.org/wiki/Isotropic_bands

    The muscle is made up of several myofibrils packed into functional units surrounded by different layers of connective tissues (epimysium, perimysium, and endomysium). The main contractile unit is mainly composed of protein filaments (myofilaments), namely myosin (thick filaments) and actin (thin filaments).

  9. Myosin head - Wikipedia

    en.wikipedia.org/wiki/Myosin_head

    The myosin head is the part of the thick myofilament made up of myosin that acts in muscle contraction, by sliding over thin myofilaments of actin.Myosin is the major component of the thick filaments and most myosin molecules are composed of a head, neck, and tail domain; the myosin head binds to thin filamentous actin, and uses ATP hydrolysis to generate force and "walk" along the thin filament.