Search results
Results From The WOW.Com Content Network
The permeability of vacuum (also known as permeability of free space) is a physical constant, denoted μ 0. The SI units of μ are volt-seconds per ampere-meter, equivalently henry per meter. Typically μ would be a scalar, but for an anisotropic material, μ could be a second rank tensor .
In the old "electromagnetic (emu)" system of units, defined in the late 19th century, k m was chosen to be a pure number equal to 2, distance was measured in centimetres, force was measured in the cgs unit dyne, and the currents defined by this equation were measured in the "electromagnetic unit (emu) of current", the "abampere". A practical ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
The impedance of free space (that is, the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ 0 and the speed of light in vacuum c 0. Before 2019, the values of both these constants were taken to be exact (they were given in the definitions of the ampere and the metre respectively), and the value ...
The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.
A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.
Magnetic complex reluctance (SI Unit: H −1) is a measurement of a passive magnetic circuit (or element within that circuit) dependent on sinusoidal magnetomotive force (SI Unit: At·Wb −1) and sinusoidal magnetic flux (SI Unit: T·m 2), and this is determined by deriving the ratio of their complex effective amplitudes.[Ref. 1-3] = ˙ ˙ = ˙ ˙ =