When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.

  3. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    Description of energy levels based on n alone gradually becomes inadequate for atomic numbers starting from 5 and fails completely on potassium (Z = 19) and afterwards. The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between

  4. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    Four quantum numbers can describe an electron energy level in a hydrogen-like atom completely: Principal quantum number (n) Azimuthal quantum number (ℓ) Magnetic quantum number (m ℓ) Spin quantum number (m s) These quantum numbers are also used in the classical description of nuclear particle states (e.g. protons and neutrons).

  5. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).

  6. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.

  7. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    The energy associated to an electron is that of its orbital. The energy of a configuration is often approximated as the sum of the energy of each electron, neglecting the electron-electron interactions. The configuration that corresponds to the lowest electronic energy is called the ground state. Any other configuration is an excited state.

  8. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]

  9. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    Energy levels for an electron in an atom: ground state and excited states. After absorbing energy, an electron may jump from the ground state to a higher-energy excited state. The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system.