When.com Web Search

  1. Ads

    related to: solving equations with fraction exponents

Search results

  1. Results From The WOW.Com Content Network
  2. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Examples include approaches to solving the heat equation, Schrödinger equation, wave equation, and other partial differential equations including a time evolution. The special case of exponentiating the derivative operator to a non-integer power is called the fractional derivative which, together with the fractional integral , is one of the ...

  4. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.

  5. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent ...

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The most efficient algorithms allow solving easily (on a computer) polynomial equations of degree higher than 1,000 (see Root-finding algorithm). For polynomials with more than one indeterminate, the combinations of values for the variables for which the polynomial function takes the value zero are generally called zeros instead of "roots".

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The limit, should it exist, is a positive real solution of the equation y = x y. Thus, x = y 1/y. The limit defining the infinite exponential of x does not exist when x > e 1/e because the maximum of y 1/y is e 1/e. The limit also fails to exist when 0 < x < e −e. This may be extended to complex numbers z with the definition: