Search results
Results From The WOW.Com Content Network
Inverted logistic S-curve to model the relation between wheat yield and soil salinity. Many natural processes, such as those of complex system learning curves, exhibit a progression from small beginnings that accelerates and approaches a climax over time. When a specific mathematical model is lacking, a sigmoid function is often used. [6]
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The figure at right illustrates the formula. Notice that the slope in the example of the figure is negative. The formula also provides a negative slope, as can be seen from the following property of the logarithm: (/) = (/).
We can see that the slope (tangent of angle) of the regression line is the weighted average of (¯) (¯) that is the slope (tangent of angle) of the line that connects the i-th point to the average of all points, weighted by (¯) because the further the point is the more "important" it is, since small errors in its position will affect the ...
The first degree polynomial equation = + is a line with slope a. A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates. If the order of the equation is increased to a second degree polynomial, the following results:
A curve point (,) is regular if the first partial derivatives (,) and (,) are not both equal to 0.. The equation of the tangent line at a regular point (,) is (,) + (,) =,so the slope of the tangent line, and hence the slope of the curve at that point, is