Search results
Results From The WOW.Com Content Network
Use of the Euler equations to estimate consumption appears to have advantages over traditional models. First, using Euler equations is simpler than conventional methods. This avoids the need to solve the consumer's optimization problem and is the most appealing element of using Euler equations to some economists. [4]
The Keynes–Ramsey rule is named after Frank P. Ramsey, who derived it in 1928, [3] and his mentor John Maynard Keynes, who provided an economic interpretation. [4] Mathematically, the Keynes–Ramsey rule is a necessary first-order condition for an optimal control problem, also known as an Euler–Lagrange equation. [5]
Koopmans claims in his main result that the Euler equations are both necessary and sufficient to characterize optimal trajectories in the model because any solutions to the Euler equations that do not converge to the optimal steady-state would hit either a zero consumption or zero capital boundary in finite time.
The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.
In contrast, a recursive model involves two or more periods, in which the consumer or producer trades off benefits and costs across the two time periods. This trade-off is sometimes represented in what is called an Euler equation. A time-series path in the recursive model is the result of a series of these two-period decisions.
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
Consumption smoothing is an economic concept for the practice of optimizing a person's standard of living through an appropriate balance between savings and consumption over time. An optimal consumption rate should be relatively similar at each stage of a person's life rather than fluctuate wildly.
The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...