Search results
Results From The WOW.Com Content Network
The motor accelerates from slip speed to synchronous speed during an accelerating half cycle of the reluctance torque. [3] Single-phase synchronous motors such as in electric wall clocks can freely rotate in either direction, unlike a shaded-pole type.
In steady state, the machine angular speed is equal to the synchronous speed and hence ω m can be replaced in the above equation by ω s. Since P m, P e and P a are given in MW, dividing them by the generator MVA rating S rated gives these quantities in per unit. Dividing the above equation on both sides by S rated gives
The rating of a brushless motor is the ratio of the motor's unloaded rotational speed (measured in RPM) to the peak (not RMS) voltage on the wires connected to the coils (the back EMF). For example, an unloaded motor of K v {\displaystyle K_{\text{v}}} = 5,700 rpm/V supplied with 11.1 V will run at a nominal speed of 63,270 rpm (= 5,700 rpm/V ...
A linear induction motor (LIM) is an alternating current (AC), asynchronous linear motor that works by the same general principles as other induction motors but is typically designed to directly produce motion in a straight line. Characteristically, linear induction motors have a finite primary or secondary length, which generates end-effects ...
Since rotation at synchronous speed does not induce rotor current, an induction motor always operates slightly slower than synchronous speed. The difference, or "slip," between actual and synchronous speed varies from about 0.5% to 5.0% for standard Design B torque curve induction motors. [30]
The difference between synchronous and operating speed is called "slip" and is often expressed as percent of the synchronous speed. For example, a motor operating at 1450 RPM that has a synchronous speed of 1500 RPM is running at a slip of +3.3%. In operation as a motor, the stator flux rotation is at the synchronous speed, which is faster than ...
Synchronous speeds for synchronous motors and alternators depend on the number of poles on the machine and the frequency of the supply. The relationship between the supply frequency, f, the number of poles, p, and the synchronous speed (speed of rotating field), n s is given by: = .
The rotor operates at synchronous speeds without current-conducting parts. Rotor losses are minimal compared to those of an induction motor, however it normally has less torque. [2] [3] Once started at synchronous speed, the motor can operate with sinusoidal voltage. Speed control requires a variable-frequency drive.