Ads
related to: white light interferometry vs confocal led sensor
Search results
Results From The WOW.Com Content Network
Figure 1: Schematic layout of a White-light Interferometer. A CCD image sensor like those used for digital photography is placed at the point where the two images are superimposed. A broadband “white light” source is used to illuminate the test and reference surfaces. A condenser lens collimates the light from the broadband light source.
Figure 3. White light interferometric microscope. White-light interferometry scanning (WLS) systems capture intensity data at a series of positions along the vertical axis, determining where the surface is located by using the shape of the white-light interferogram, the localized phase of the interferogram, or a combination of both shape and phase.
Diffraction-grating interferometer (white light) Double-slit interferometer; Dual-polarization interferometry; Fabry–Pérot interferometer; Fizeau interferometer; Fourier-transform interferometer; Fresnel interferometer (e.g. Fresnel biprism, Fresnel mirror or Lloyd's mirror) Fringes of Equal Chromatic Order interferometer (FECO) Gabor hologram
White light interferometry is utilized to detect deformations of the wafer. Low coherence light from a white light source passes through the top wafer to the sensor. The white light is generated by a halogen lamp and modulated. The spectrum of the reflected light of the sensor cavity is detected by a spectrometer. The captured spectrum is used ...
Figure 1. The light path through a Michelson interferometer.The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the ...
Confocal microscopy: this method has the advantage of high lateral resolution because of the use of a pin hole but has the disadvantage that it can not measure on steep flanks. Also, it quickly loses vertical resolution when looking at large areas since the vertical sensitivity depends on the microscope objective in use.
The signal can be acquired with a camera in wide-field operation (a, b) or by point detection in confocal arrangement (c, d). Interferometric scattering microscopy (iSCAT) refers to a class of methods that detect and image a subwavelength object by interfering the light scattered by it with a
Michelson interferometers using a white light source White light has a tiny coherence length and is difficult to use in a Michelson (or Mach–Zehnder ) interferometer. Even a narrowband (or "quasi-monochromatic") spectral source requires careful attention to issues of chromatic dispersion when used to illuminate an interferometer.