When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical conic - Wikipedia

    en.wikipedia.org/wiki/Spherical_conic

    The solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance. [ 5 ] Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of ...

  3. Conical coordinates - Wikipedia

    en.wikipedia.org/wiki/Conical_coordinates

    The elliptic cones intersect the sphere in spherical conics. Conical coordinates , sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r ) and by two families of perpendicular elliptic cones, aligned along the z - and x ...

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  5. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.

  6. Conical surface - Wikipedia

    en.wikipedia.org/wiki/Conical_surface

    More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface. [4] [5]

  7. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    The solution of this equation is = [+ ⁡ ()] which shows that the orbit is a conic section of eccentricity e; here, φ 0 is the initial angle, and the center of force is at the focus of the conic section. Using the half-angle formula for sine, this solution can also be written as = + ⁡ ()

  8. 10 Eye-Catching Examples of Spherical Architecture - AOL

    www.aol.com/news/10-eye-catching-examples...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...