Search results
Results From The WOW.Com Content Network
In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time , this means that for those properties p of the system, the partial derivative with respect to time is zero and remains so:
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
Steady state is reached (attained) after transient (initial, oscillating or turbulent) state has subsided. During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady ...
While proportional control provided stability against small disturbances, it was insufficient for dealing with a steady disturbance, notably a stiff gale (due to steady-state error), which required adding the integral term. Finally, the derivative term was added to improve stability and control.
The derivative of a field with respect to a fixed position in space is called the Eulerian derivative, ... Steady-State Problems. Springer 2011
For this case only two components of the shear stress became non-zero: = ˙ and = ˙ where ˙ is the shear rate.. Thus, the upper-convected Maxwell model predicts for the simple shear that shear stress to be proportional to the shear rate and the first difference of normal stresses is proportional to the square of the shear rate, the second difference of normal stresses is always zero.
The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product:
The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.