Ad
related to: coefficient of volume expansion gas calculator equation
Search results
Results From The WOW.Com Content Network
This provides an expression for the Joule–Thomson coefficient in terms of the commonly available properties heat capacity, molar volume, and thermal expansion coefficient. It shows that the Joule–Thomson inversion temperature, at which μ J T {\displaystyle \mu _{\mathrm {JT} }} is zero, occurs when the coefficient of thermal expansion is ...
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
where γ is the heat capacity ratio, α is the volumetric coefficient of thermal expansion, ρ = N/V is the particle density, and = (/) is the thermal pressure coefficient. In an extensive thermodynamic system, the application of statistical mechanics shows that the isothermal compressibility is also related to the relative size of fluctuations ...
For an ideal gas in a closed system undergoing a slow process with negligible changes in kinetic and potential energy the process is polytropic, such that + = where C is a constant, =, =, and with the polytropic coefficient = +.
To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state. To deveop the pressure-dependent thermal expansion equation of state, in an compression process at room temperature from (V 0, T 0, P 0) to (V 1, T 0,P 1), a general form of volume is expressed as
The virial expansion is a model of thermodynamic equations of state.It expresses the pressure P of a gas in local equilibrium as a power series of the density.This equation may be represented in terms of the compressibility factor, Z, as = + + + This equation was first proposed by Kamerlingh Onnes. [1]
β is the coefficient of volume expansion (equal to approximately 1/T for ideal gases) T s is the surface temperature; T ∞ is the bulk temperature; L is the vertical length; D is the diameter; ν is the kinematic viscosity. The L and D subscripts indicate the length scale basis for the Grashof number.