When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    In functional-analysis contexts from optimization and game theory, it is often useful to define the Heaviside function as a set-valued function to preserve the continuity of the limiting functions and ensure the existence of certain solutions. In these cases, the Heaviside function returns a whole interval of possible solutions, H(0) = [0,1].

  3. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The Heaviside–Feynman formula, also known as the Jefimenko–Feynman formula, can be seen as the point-like electric charge version of Jefimenko's equations. Actually, it can be (non trivially) deduced from them using Dirac functions , or using the Liénard-Wiechert potentials . [ 4 ]

  4. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.

  5. Truncated power function - Wikipedia

    en.wikipedia.org/wiki/Truncated_power_function

    Download as PDF; Printable version; In other projects ... In mathematics, the truncated power function [1] with exponent is defined as + = {: > ... is the Heaviside ...

  6. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  8. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  9. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Thus, the Gibbs phenomenon can be seen as the result of convolving a Heaviside step function (if periodicity is not required) or a square wave (if periodic) with a sinc function: the oscillations in the sinc function cause the ripples in the output. The sine integral, exhibiting the Gibbs phenomenon for a step function on the real line