Ad
related to: converse of bpt theorem definition geometry mathstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Meusnier's theorem (differential geometry) Midy's theorem (number theory) Mihăilescu's theorem (number theory) Milliken–Taylor theorem (Ramsey theory) Milliken's tree theorem (Ramsey theory) Milman–Pettis theorem (Banach space) Min-max theorem (functional analysis) Minimax theorem (game theory) Minkowski's theorem (geometry of numbers)
Some authors, such as Hartshorne in his book Algebraic Geometry and Q. Liu in his book Algebraic Geometry and Arithmetic Curves, define immersions as the composite of an open immersion followed by a closed immersion. These immersions are immersions in the sense above, but the converse is false.
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
Pascal's theorem has a short proof using the Cayley–Bacharach theorem that given any 8 points in general position, there is a unique ninth point such that all cubics through the first 8 also pass through the ninth point. In particular, if 2 general cubics intersect in 8 points then any other cubic through the same 8 points meets the ninth ...
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.