When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y(x) = 7x 3 – 8x 2 – 3x + 3, the 2-point Gaussian quadrature rule even returns an exact result.

  3. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    w i are quadrature weights, and; x i are the roots of the nth Legendre polynomial. This choice of quadrature weights w i and quadrature nodes x i is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. Many algorithms have been developed for computing Gauss–Legendre quadrature rules.

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature ; [ 1 ] others take "quadrature" to include higher-dimensional integration.

  5. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist. If it is possible to evaluate the integrand at unequally spaced points, then other methods such as Gaussian quadrature and Clenshaw–Curtis quadrature are generally more accurate.

  6. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    In mathematics, particularly in geometry, quadrature (also called squaring) is a historical process of drawing a square with the same area as a given plane figure or computing the numerical value of that area. A classical example is the quadrature of the circle (or squaring the circle).

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    These zeros play an important role in numerical integration based on Gaussian quadrature. The specific quadrature based on the P n {\displaystyle P_{n}} 's is known as Gauss-Legendre quadrature . From this property and the facts that P n ( ± 1 ) ≠ 0 {\displaystyle P_{n}(\pm 1)\neq 0} , it follows that P n ( x ) {\displaystyle P_{n}(x)} has n ...

  8. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).

  9. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    "Table of zeros and Gaussian Weights of certain Associated Laguerre Polynomials and the related Hermite Polynomials". Mathematics of Computation. 18 (88): 598– 616. doi: 10.1090/S0025-5718-1964-0166397-1. JSTOR 2002946. MR 0166397. Ehrich, S. (2002). "On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas".