Search results
Results From The WOW.Com Content Network
The lower half-plane is the set of points (,) with < instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants.
A half-space can be either open or closed. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. The open (closed) upper half-space is the half-space of all (x 1, x 2, ..., x n) such that x n > 0
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
In complex analysis, a Schwarz–Christoffel mapping is a conformal map of the upper half-plane or the complex unit disk onto the interior of a simple polygon.Such a map is guaranteed to exist by the Riemann mapping theorem (stated by Bernhard Riemann in 1851); the Schwarz–Christoffel formula provides an explicit construction.
Many examples of bounded convex polytopes can be found in the article "polyhedron".In the 2-dimensional case the full-dimensional examples are a half-plane, a strip between two parallel lines, an angle shape (the intersection of two non-parallel half-planes), a shape defined by a convex polygonal chain with two rays attached to its ends, and a convex polygon.
In mathematics, and particularly general topology, the half-disk topology is an example of a topology given to the set , given by all points (,) in the plane such that . [1] The set X {\displaystyle X} can be termed the closed upper half plane.
A modular function is a function that is invariant with respect to the modular group, but without the condition that it be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic : they are holomorphic on the complement of a set of isolated points, which are poles of the function.
A similar approach applies to, e.g., the right half-plane. On the real vector space ... For example: every function in H 1 is the product of two functions in H 2; ...