Search results
Results From The WOW.Com Content Network
The dimension of this vector space, if it exists, [a] is called the degree of the extension. For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b]
This is a list of vector spaces in abstract mathematics, by Wikipedia page. Banach space; Besov space; Bochner space; Dual space; Euclidean space; Fock space; Fréchet space; Hardy space; Hilbert space; Hölder space; LF-space; L p space; Minkowski space; Montel space; Morrey–Campanato space; Orlicz space; Riesz space; Schwartz space; Sobolev ...
When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This means that, for two vector spaces over a given field and with the same dimension, the properties that depend only on the vector-space structure are exactly the same (technically the vector spaces are isomorphic). A vector space is finite-dimensional if its dimension is a natural number.
In this case, a Euclidean vector is an element of a normed vector space of finite dimension over the reals, or, typically, an element of the real coordinate space equipped with the dot product. This makes sense, as the addition in such a vector space acts freely and transitively on the vector space itself.
If V is a vector space over a field k, the set of all linear functionals from V to k is itself a vector space over k with addition and scalar multiplication defined pointwise. This space is called the dual space of V , or sometimes the algebraic dual space , when a topological dual space is also considered.
The idea of a prehomogeneous vector space was introduced by Mikio Sato. It is a finite-dimensional vector space V with a group action of an algebraic group G, such that there is an orbit of G that is open for the Zariski topology (and so, dense). An example is GL(1) acting on a one-dimensional space.