Search results
Results From The WOW.Com Content Network
lb/ft 3: ≡ lb/ft 3: ≈ 16.018 463 37 kg/m 3: pound (avoirdupois) per cubic inch lb/in 3: ≡ lb/in 3: ≈ 2.767 990 471 × 10 4 kg/m 3: pound (avoirdupois) per gallon (imperial) lb/gal ≡ lb/gal ≈ 99.776 372 66 kg/m 3: pound (avoirdupois) per gallon (US fluid) lb/gal ≡ lb/gal ≈ 119.826 4273 kg/m 3: slug per cubic foot slug/ft 3: ≡ ...
{{convert|123|cuyd|m3+board feet}} → 123 cubic yards (94 m 3; 40,000 board feet) The following converts a pressure to four output units. The precision is 1 (1 decimal place), and units are abbreviated and linked.
Composites are defined in pairs, but any number of pairs can be used to specify an input. For example, given that ch is defined as a subdivision of mi, and that ft is a subdivision of ch, an input length could be specified as 1|mi|2|ch|3|ft. Also, with suitable pairs defined, an input length could be specified as 4|mi|3|yd|2|ft|1|in. There is ...
The foot (standard symbol: ft) [1] [2] is a unit of length in the British imperial and United States customary systems of measurement. The prime symbol, ′, is commonly used to represent the foot. [3] In both customary and imperial units, one foot comprises 12 inches, and one yard comprises three feet.
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula. Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees ...
Leonardo da Vinci drew the Vitruvian Man within a square of side 1.83 m (6 ft 0 in) and a circle about 1.2 m (3 ft 11 in) in radius. To help compare different orders of magnitude, this section lists lengths between one meter and ten meters. Light, in vacuum, travels 1 meter in 1 ⁄ 299,792,458, or 3.3356409519815E-9 of a second.
[3] The current international standard for the metric system is the International System of Units (Système international d'unités or SI). It is a system in which all units can be expressed in terms of seven units. The units that serve as the SI base units are the metre, kilogram, second, ampere, kelvin, mole, and candela.