Search results
Results From The WOW.Com Content Network
(Nested loops occur when one loop is inside of another loop.) One classical usage is to reduce memory access latency or the cache bandwidth necessary due to cache reuse for some common linear algebra algorithms. The technique used to produce this optimization is called loop tiling, [1] also known as loop blocking [2] or strip mine and interchange.
The code "inside" the loop (the body of the loop, shown below as xxx) is obeyed a specified number of times, or once for each of a collection of items, or until some condition is met, or indefinitely. When one of those items is itself also a loop, it is called a "nested loop". [4] [5] [6]
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
Because the entire inner loop is performed for each iteration of the outer loop, optimizations of the inner loop will have much greater effect than optimizations of the outer loop. In many languages there are at least two types of loops – for loops and while loops – and they can be nested within each other. [1]
Nested functions can be used for unstructured control flow, by using the return statement for general unstructured control flow.This can be used for finer-grained control than is possible with other built-in features of the language – for example, it can allow early termination of a for loop if break is not available, or early termination of a nested for loop if a multi-level break or ...
The naïve algorithm using three nested loops uses Ω(n 3) communication bandwidth. Cannon's algorithm, also known as the 2D algorithm, is a communication-avoiding algorithm that partitions each input matrix into a block matrix whose elements are submatrices of size √ M/3 by √ M/3, where M is the size of fast memory. [28]
algorithm nested_loop_join is for each tuple r in R do for each tuple s in S do if r and s satisfy the join condition then yield tuple <r,s> This algorithm will involve n r *b s + b r block transfers and n r +b r seeks, where b r and b s are number of blocks in relations R and S respectively, and n r is the number of tuples in relation R.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).