Search results
Results From The WOW.Com Content Network
The asthenosphere in relation to the other layers of Earth's structure. The asthenosphere is a part of the upper mantle just below the lithosphere that is involved in plate tectonic movement and isostatic adjustments. It is composed of peridotite, a rock containing mostly the minerals olivine and pyroxene. [2]
The internal structure of Earth are the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust , a highly viscous asthenosphere , and solid mantle , a liquid outer core whose flow generates the Earth's magnetic field , and a solid inner core .
Earth's inner structure can be described both chemically (crust, mantle, and core) and mechanically. The lithosphere–asthenosphere boundary lies between Earth's cooler, rigid lithosphere and the warmer, ductile asthenosphere. The actual depth of the boundary is still a topic of debate and study, although it is known to vary according to the ...
Map showing Earth's principal tectonic plates and their boundaries in detail. These plates comprise the bulk of the continents and the Pacific Ocean.For purposes of this list, a major plate is any plate with an area greater than 20 million km 2 (7.7 million sq mi)
Earth systems across mountain belts include the asthenosphere (ductile region of the upper mantle), lithosphere (crust and uppermost upper mantle), surface, atmosphere, hydrosphere, cryosphere, and biosphere. Across mountain belts these Earth systems each have their own processes which interact within the system they belong.
If the viscosity of the upwelling asthenosphere is greater than that of the mantle lithosphere, delamination will stop. The upwelling asthenosphere forms two chilled, solid boundary layers on the top and bottom of the sill layer. This reduces the thickness of the portion of the lowermost crust which behaves viscously.
The boundary between these two layers is rheologically based and is not necessarily a strict function of depth. Specifically, oceanic lithosphere (lithosphere underneath the oceanic plates) and subcontinental lithosphere, is defined as a mechanical boundary layer that heats via conduction and the asthenosphere is a convecting adiabatic layer ...
Earth's crust and mantle, Moho discontinuity between bottom of crust and solid uppermost mantle. The Mohorovičić discontinuity (/ ˌ m oʊ h ə ˈ r oʊ v ɪ tʃ ɪ tʃ / MOH-hə-ROH-vih-chitch; Croatian: [moxorôʋiːtʃitɕ]) [1] – usually called the Moho discontinuity, Moho boundary, or just Moho – is the boundary between the crust and the mantle of Earth.