When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Numeric precision in Microsoft Excel. As with other spreadsheets, Microsoft Excel works only to limited accuracy because it retains only a certain number of figures to describe numbers (it has limited precision). With some exceptions regarding erroneous values, infinities, and denormalized numbers, Excel calculates in double-precision floating ...

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Greatest common divisor. In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is ...

  4. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Floor function. Ceiling function. In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor (x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted ⌈x⌉ or ceil (x).

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .

  6. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    Extended Euclidean algorithm also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when a and b are coprime. With that provision, x is the modular multiplicative inverse of a ...

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b. For n equal to 2, the equation has infinitely many solutions, the Pythagorean triples.)

  8. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    A simple formula is. for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number . But when is not prime, the first factor becomes zero and the formula ...

  9. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Bézout's identity. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the form az ...