When.com Web Search

  1. Ad

    related to: numbers with even square roots

Search results

  1. Results From The WOW.Com Content Network
  2. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.

  3. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.

  4. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number. Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

  5. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Square root. Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 52 (5 squared). In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1] For example, 4 and −4 are square roots of 16 ...

  6. Galileo's paradox - Wikipedia

    en.wikipedia.org/wiki/Galileo's_paradox

    Galileo's paradox is a demonstration of one of the surprising properties of infinite sets. In his final scientific work, Two New Sciences, Galileo Galilei made apparently contradictory statements about the positive integers. First, a square is an integer which is the square of an integer. Some numbers are squares, while others are not ...

  7. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    Let p be an odd prime. The quadratic excess E (p) is the number of quadratic residues on the range (0, p /2) minus the number in the range (p /2, p) (sequence A178153 in the OEIS). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p − r.

  8. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    An algebraic number is a number that is a root of a non-zero polynomial (of finite degree) in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero.

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Like square roots, the square super-root of x may not have a single solution. Unlike square roots, determining the number of square super-roots of x may be difficult. In general, if e − 1 / e < x < 1 {\displaystyle e^{-1/e}<x<1} , then x has two positive square super-roots between 0 and 1; and if x > 1 {\displaystyle x>1} , then x has one ...