When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  3. Electrochemical potential - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_potential

    In generic terms, electrochemical potential is the mechanical work done in bringing 1 mole of an ion from a standard state to a specified concentration and electrical potential. According to the IUPAC definition, [ 4 ] it is the partial molar Gibbs energy of the substance at the specified electric potential, where the substance is in a ...

  4. Metal ions in aqueous solution - Wikipedia

    en.wikipedia.org/wiki/Metal_ions_in_aqueous_solution

    A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H 2 O) n] z+. The solvation number , n , determined by a variety of experimental methods is 4 for Li + and Be 2+ and 6 for most elements in periods 3 and 4 of the periodic table .

  5. Concentration cell - Wikipedia

    en.wikipedia.org/wiki/Concentration_cell

    A concentration cell produces a small voltage as it attempts to reach chemical equilibrium, which occurs when the concentration of reactant in both half-cells are equal. Because an order of magnitude concentration difference produces less than 60 millivolts at room temperature, concentration cells are not typically used for energy storage.

  6. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.

  7. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    The analytical (total) concentration of a reactant R at the i th titration point is given by = + [] + where R 0 is the initial amount of R in the titration vessel, v 0 is the initial volume, [R] is the concentration of R in the burette and v i is the volume added. The burette concentration of a reactant not present in the burette is taken to be ...

  8. Ion transport number - Wikipedia

    en.wikipedia.org/wiki/Ion_transport_number

    The practical importance of high (i.e. close to 1) transference numbers of the charge-shuttling ion (i.e. Li+ in lithium-ion batteries) is related to the fact, that in single-ion devices (such as lithium-ion batteries) electrolytes with the transfer number of the ion near 1, concentration gradients do not develop. A constant electrolyte ...

  9. Half-cell - Wikipedia

    en.wikipedia.org/wiki/Half-cell

    A standard half-cell consists of a metal electrode in an aqueous solution where the concentration of the metal ions is 1 molar (1 mol/L) at 298 kelvins (25 °C). [1] In the case of the standard hydrogen electrode (SHE) , a platinum electrode is used and is immersed in an acidic solution where the concentration of hydrogen ions is 1M, with ...