Search results
Results From The WOW.Com Content Network
We also have the rule that 10 x + y is divisible iff x + 4 y is divisible by 13. For example, to test the divisibility of 1761 by 13 we can reduce this to the divisibility of 461 by the first rule. Using the second rule, this reduces to the divisibility of 50, and doing that again yields 5. So, 1761 is not divisible by 13.
Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...
The positive integers may be partially ordered by divisibility: if a divides b (that is, if b is an integer multiple of a) write a ≤ b (or equivalently, b ≥ a). (Note that the usual magnitude-based definition of ≤ is not used here.) Under this ordering, the positive integers become a lattice, with meet given by the gcd and join given by ...
The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .
The following laws can be verified using the properties of divisibility. They are a special case of rules in modular arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As with ordinary arithmetic, multiplication and addition are commutative and associative in modulo 2 arithmetic ...
Division is often shown in algebra and science by placing the dividend over the divisor with a horizontal line, also called a fraction bar, between them. For example, "a divided by b" can be written as: which can also be read out loud as "divide a by b" or "a over b".
Fig. 3 Graph of the divisibility of numbers from 1 to 4. This set is partially, but not totally, ordered because there is a relationship from 1 to every other number, but there is no relationship from 2 to 3 or 3 to 4. Standard examples of posets arising in mathematics include:
Bourbaki, N. (1989) [1970], Algebra I, Chapters 1–3, Springer-Verlag, ISBN 9783540642435; This article incorporates material from the Citizendium article "Divisibility (ring theory)", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL