Search results
Results From The WOW.Com Content Network
The x86-64 architecture does not use segmentation in long mode (64-bit mode). Four of the segment registers, CS, SS, DS, and ES, are forced to base address 0, and the limit to 2 64 . The segment registers FS and GS can still have a nonzero base address.
Four registers are used to refer to four segments on the 16-bit x86 segmented memory architecture. DS (data segment), CS (code segment), SS (stack segment), and ES (extra segment). Another 16-bit register can act as an offset into a given segment, and so a logical address on this platform is written segment:offset, typically in hexadecimal ...
The x86-64 architecture does not support segmentation in "long mode" (64-bit mode). [18] Four of the segment registers: CS, SS, DS, and ES are forced to 0, and the limit to 2 64. The segment registers FS and GS can still have a nonzero base address. This allows operating systems to use these segments for special purposes such as thread-local ...
B = Big: If set, the maximum offset size for a data segment is increased to 32-bit 0xffffffff. Otherwise it's the 16-bit max 0x0000ffff. Essentially the same meaning as "D". L=Long If set, this is a 64-bit segment (and D must be zero), and code in this segment uses the 64-bit instruction encoding. "L" cannot be set at the same time as "D" aka "B".
Should 16-bit code need to run in a 32-bit environment while sharing memory (this happens e.g. when running OS/2 1.x programs on OS/2 2.0 and later), the LDT must be written in such a way that every flat (paged) address has also a selector in the LDT (typically this results in the LDT being filled with 64 KiB entries).
For example, in an Intel 8086, as well as in later processors running 16-bit code, a far pointer has two parts: a 16-bit segment value, and a 16-bit offset value. A linear address is obtained by shifting the binary segment value four times to the left, and then adding the offset value. Hence the effective address is 21 bits [Note 1]. There can ...
The alternate wording b-bit aligned designates a b/8 byte aligned address (ex. 64-bit aligned is 8 bytes aligned). A memory access is said to be aligned when the data being accessed is n bytes long and the datum address is n-byte aligned. When a memory access is not aligned, it is said to be misaligned. Note that by definition byte memory ...
Manual memory management (as in C++) and reference counting have a similar issue of arbitrarily long pauses in case of deallocating a large data structure and all its children, though these only occur at fixed times, not depending on garbage collection. Manual heap allocation. search for best/first-fit block of sufficient size; free list ...