When.com Web Search

  1. Ads

    related to: linear dependence vs independence matrices examples problems

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    If such a linear dependence exists with at least a nonzero component, then the n vectors are linearly dependent. Linear dependencies among v 1 , ..., v n form a vector space. If the vectors are expressed by their coordinates, then the linear dependencies are the solutions of a homogeneous system of linear equations , with the coordinates of the ...

  3. Matroid - Wikipedia

    en.wikipedia.org/wiki/Matroid

    In combinatorics, a matroid / ˈ m eɪ t r ɔɪ d / is a structure that abstracts and generalizes the notion of linear independence in vector spaces.There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats.

  4. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  5. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  6. Frame (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Frame_(linear_algebra)

    Given that {} spans and is linearly dependent, one strategy is to remove vectors from the set until it becomes linearly independent and forms a basis. There are some problems with this plan: There are some problems with this plan:

  7. Dependence relation - Wikipedia

    en.wikipedia.org/wiki/Dependence_relation

    If is a non-empty set with a dependence relation , then always has a basis with respect to . Furthermore, any two bases of X {\displaystyle X} have the same cardinality . If a S {\displaystyle a\triangleleft S} and S ⊆ T {\displaystyle S\subseteq T} , then a T {\displaystyle a\triangleleft T} , using property 3. and 1.

  8. Alternant matrix - Wikipedia

    en.wikipedia.org/wiki/Alternant_matrix

    The alternant can be used to check the linear independence of the functions ,, …, in function space.For example, let () = ⁡ (), = ⁡ and choose =, = /.Then the alternant is the matrix [] and the alternant determinant is .

  9. Algebraic independence - Wikipedia

    en.wikipedia.org/wiki/Algebraic_independence

    Many finite matroids may be represented by a matrix over a field , in which the matroid elements correspond to matrix columns, and a set of elements is independent if the corresponding set of columns is linearly independent. Every matroid with a linear representation of this type may also be represented as an algebraic matroid, by choosing an ...