When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lebesgue differentiation theorem - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_differentiation...

    The derivative of this integral at x is defined to be | |, where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B centered at x, and B → x means that the diameter of B tends to 0. The Lebesgue differentiation theorem ( Lebesgue 1910 ) states that this derivative exists and is equal to f ( x ) at almost every point x ∈ R n . [ 1 ]

  3. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    A Lebesgue-measurable set can be "squeezed" between a containing G δ set and a contained F σ. I.e, if A is Lebesgue-measurable then there exist a G δ set G and an F σ F such that G ⊇ A ⊇ F and λ(G \ A) = λ(A \ F) = 0. Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure.

  4. Lebesgue point - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_point

    The Lebesgue points of are thus points where does not oscillate too much, in an average sense. [ 2 ] The Lebesgue differentiation theorem states that, given any f ∈ L 1 ( R k ) {\displaystyle f\in L^{1}(\mathbb {R} ^{k})} , almost every x {\displaystyle x} is a Lebesgue point of f {\displaystyle f} .

  5. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Lebesgue integral is obtained by slicing along the y-axis, using the 1-dimensional Lebesgue measure to measure the "width" of the slices. Folland (1999) summarizes the difference between the Riemann and Lebesgue approaches thus: "to compute the Riemann integral of f , one partitions the domain [ a , b ] into subintervals", while in the ...

  6. Singular measure - Wikipedia

    en.wikipedia.org/wiki/Singular_measure

    As a particular case, a measure defined on the Euclidean space is called singular, if it is singular with respect to the Lebesgue measure on this space. For example, the Dirac delta function is a singular measure. Example. A discrete measure.

  7. Rademacher's theorem - Wikipedia

    en.wikipedia.org/wiki/Rademacher's_theorem

    The first step of the proof is to show that, for any fixed unit vector v, the v-directional derivative of u exists almost everywhere. This is a consequence of a special case of the Fubini theorem: a measurable set in R n has Lebesgue measure zero if its restriction to every line parallel to v has (one

  8. Lebesgue's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Lebesgue's_decomposition...

    Hence (singular continuous measures aside), Lebesgue decomposition gives a very explicit description of measures. The Cantor measure (the probability measure on the real line whose cumulative distribution function is the Cantor function) is an example of a singular continuous measure.

  9. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous.It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure.