Search results
Results From The WOW.Com Content Network
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation: any index may appear at most twice and furthermore a raised index must contract with a lowered index ...
The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example:
Open Problems in Mathematics is a book, edited by John Forbes Nash Jr. and Michael Th. Rassias, published in 2016 by Springer (ISBN 978-3-319-32160-8). The book consists of seventeen expository articles, written by outstanding researchers, on some of the central open problems in the field of mathematics.
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
The index problem is the following: compute the (analytical) index of D using only the symbol s and topological data derived from the manifold and the vector bundle. The Atiyah–Singer index theorem solves this problem, and states: The analytical index of D is equal to its topological index.
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In computational number theory, the index calculus algorithm is a probabilistic algorithm for computing discrete logarithms. Dedicated to the discrete logarithm in ( Z / q Z ) ∗ {\displaystyle (\mathbb {Z} /q\mathbb {Z} )^{*}} where q {\displaystyle q} is a prime, index calculus leads to a family of algorithms adapted to finite fields and to ...