Search results
Results From The WOW.Com Content Network
In an extreme case, roughly 90% of 667.5 cm −1 photons are absorbed within 1 meter by 400 ppm of CO 2 at surface density, [23] but they are replaced by emission of an equal number of 667.5 cm −1 photons. The radiation field thereby maintains the blackbody intensity appropriate for the local temperature.
The radiation reaction phenomenon is one of the key problems and consequences of the Larmor formula. According to classical electrodynamics, a charged particle produces electromagnetic radiation as it accelerates. The particle loses momentum and energy as a result of the radiation, which is carrying it away from it.
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic and nuclear forces. [1] Radioactive decay is a random process at the level of ...
Radiochemistry is the chemistry of radioactive materials, in which radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
Not all molecules in the solution have a P-32 on the last (i.e., gamma) phosphate: the "specific activity" gives the radioactivity concentration and depends on the radionuclei's half-life. If every molecule were labelled, the maximum theoretical specific activity is obtained that for P-32 is 9131 Ci/mmol.
The output of the radiation detector is a random sequence of pulses, usually processed by some form of "ratemeter," which continuously estimates the rate at which the detector is responding to the radioactivity deposited on the filter medium. There are two fundamental types of ratemeters, analog and digital.