Search results
Results From The WOW.Com Content Network
In contrast, symbol a contains −lg(3/4) ~ 0.415 bits of information, hence sometimes it produces one bit (from state 6 and 7), sometimes 0 bits (from state 4 and 5), only increasing the state, which acts as buffer containing fractional number of bits: lg(x). The number of states in practice is for example 2048, for 256 size alphabet (to ...
If S is the set of natural numbers, and T is some subset of the natural numbers, then the indicator vector is naturally a single point in the Cantor space: that is, an infinite sequence of 1's and 0's, indicating membership, or lack thereof, in T. Such vectors commonly occur in the study of arithmetical hierarchy.
A min-cut of a weighted graph having min-cut weight 4 [1]. In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights.
Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0, rather than the index 1 as is typical in everyday non-mathematical or non-programming circumstances.
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
In vector logic, the matrix-vector structure of logical operators is an exact translation to the format of linear algebra of these Boolean polynomials, where the x and 1−x correspond to vectors s and n respectively (the same for y and 1−y). In the example of NAND, f(1,1)=n and f(1,0)=f(0,1)=f(0,0)=s and the matrix version becomes:
Cartesian coordinates identify points of the Euclidean plane with pairs of real numbers. In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R n or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.
In functional analysis, an F-space is a vector space over the real or complex numbers together with a metric: such that Scalar multiplication in X {\displaystyle X} is continuous with respect to d {\displaystyle d} and the standard metric on R {\displaystyle \mathbb {R} } or C . {\displaystyle \mathbb {C} .}