Search results
Results From The WOW.Com Content Network
For unordered access as defined in the java.util.Map interface, the java.util.concurrent.ConcurrentHashMap implements java.util.concurrent.ConcurrentMap. [2] The mechanism is a hash access to a hash table with lists of entries, each entry holding a key, a value, the hash, and a next reference.
Threading Building Blocks provide concurrent unordered maps for C++ which allow concurrent insertion and traversal and are kept in a similar style to the C++11 std::unordered_map interface. Included within are the concurrent unordered multimaps, which allow multiple values to exist for the same key in a concurrent unordered map. [ 12 ]
The hash function in Java, used by HashMap and HashSet, is provided by the Object.hashCode() method. Since every class in Java inherits from Object , every object has a hash function. A class can override the default implementation of hashCode() to provide a custom hash function more in accordance with the properties of the object.
C++11 includes unordered_map in its standard library for storing keys and values of arbitrary types. [52] Go's built-in map implements a hash table in the form of a type. [53] Java programming language includes the HashSet, HashMap, LinkedHashSet, and LinkedHashMap generic collections. [54] Python's built-in dict implements a hash table in the ...
This is the case for tree-based implementations, one representative being the <map> container of C++. [16] The order of enumeration is key-independent and is instead based on the order of insertion. This is the case for the "ordered dictionary" in .NET Framework, the LinkedHashMap of Java and Python. [17] [18] [19] The latter is more common.
Collection implementations in pre-JDK 1.2 versions of the Java platform included few data structure classes, but did not contain a collections framework. [4] The standard methods for grouping Java objects were via the array, the Vector, and the Hashtable classes, which unfortunately were not easy to extend, and did not implement a standard member interface.
In computer science, read-copy-update (RCU) is a synchronization mechanism that avoids the use of lock primitives while multiple threads concurrently read and update elements that are linked through pointers and that belong to shared data structures (e.g., linked lists, trees, hash tables).
In computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization.It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value.