When.com Web Search

  1. Ads

    related to: solving and graphing inequalities lecture pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.

  3. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  4. Graph equation - Wikipedia

    en.wikipedia.org/wiki/Graph_equation

    Graph equations for line graphs and total graphs, DM Cvetkovic, SK Simic – Discrete Mathematics, 1975 Graph equations, graph inequalities and a fixed point theorem, DM Cvetkovic, IB Lackovic, SK Simic – Publ. Inst. Math.(Belgrade)., 1976 – elib.mi.sanu.ac.yu, PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 20 (34), 1976,

  5. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4 x < 2 x + 1 ≤ 3 x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction.

  6. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The bounds these inequalities give on a finite sample are less tight than those the Chebyshev inequality gives for a distribution. To illustrate this let the sample size N = 100 and let k = 3. Chebyshev's inequality states that at most approximately 11.11% of the distribution will lie at least three standard deviations away from the mean.

  7. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    In graph theory, isoperimetric inequalities are at the heart of the study of expander graphs, which are sparse graphs that have strong connectivity properties. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory , design of robust computer networks , and the theory of ...

  8. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space.

  9. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    Cutting planes were proposed by Ralph Gomory in the 1950s as a method for solving integer programming and mixed-integer programming problems. However, most experts, including Gomory himself, considered them to be impractical due to numerical instability, as well as ineffective because many rounds of cuts were needed to make progress towards the solution.