Ad
related to: the hk theorem examples statistics problems and solutions 6th
Search results
Results From The WOW.Com Content Network
Though there are many approximate solutions (such as Welch's t-test), the problem continues to attract attention [4] as one of the classic problems in statistics. Multiple comparisons: There are various ways to adjust p-values to compensate for the simultaneous or sequential testing of hypotheses. Of particular interest is how to simultaneously ...
So in this case the solution to the Hamburger moment problem is unique and μ, being the spectral measure of T, has finite support. More generally, the solution is unique if there are constants C and D such that, for all n, | m n | ≤ CD n n! (Reed & Simon 1975, p. 205). This follows from the more general Carleman's condition.
This theorem has since been extended to the time-dependent domain to develop time-dependent density functional theory (TDDFT), which can be used to describe excited states. The second HK theorem defines an energy functional for the system and proves that the ground-state electron density minimizes this energy functional.
Central limit theorem; Characterization of probability distributions; Cochran's theorem; Complete class theorem; Continuous mapping theorem; Cox's theorem; Cramér's decomposition theorem; Craps principle
The formal foundation of TDDFT is the Runge–Gross (RG) theorem (1984) [1] – the time-dependent analogue of the Hohenberg–Kohn (HK) theorem (1964). [2] The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density.
Example: Given the mean and variance (as well as all further cumulants equal 0) the normal distribution is the distribution solving the moment problem. In mathematics , a moment problem arises as the result of trying to invert the mapping that takes a measure μ {\displaystyle \mu } to the sequence of moments
Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis ), 13 and 16 [ h ] unresolved, and 4 and 23 as too vague to ever be described as solved.
The topological problem of finding a non-holonomic solution is much easier to handle and can be addressed with the obstruction theory for topological bundles. While many underdetermined partial differential equations satisfy the h-principle, the falsity of one is also an interesting statement.