Search results
Results From The WOW.Com Content Network
Coastal erosion may be caused by hydraulic action, abrasion, impact and corrosion by wind and water, and other forces, natural or unnatural. [3] On non-rocky coasts, coastal erosion results in rock formations in areas where the coastline contains rock layers or fracture zones with varying resistance to erosion.
The Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes soil erosion processes. [1]Erosion models play critical roles in soil and water resource conservation and nonpoint source pollution assessments, including: sediment load assessment and inventory, conservation planning and design for sediment control, and for the advancement of scientific understanding.
The upper curve shows the critical erosion velocity in cm/s as a function of particle size in mm, while the lower curve shows the deposition velocity as a function of particle size. Note that the axes are logarithmic. The plot shows several key concepts about the relationships between erosion, transportation, and deposition.
Diagram of accretion and erosion of sediments in a coastal system. Black arrows indicate accretion, and white arrows indicate erosion. Sedimentary budgets are a coastal management tool used to analyze and describe the different sediment inputs (sources) and outputs (sinks) on the coasts, which is used to predict morphological change in any particular coastline over time.
The geographic cycle, or cycle of erosion, is an idealized model that explains the development of relief in landscapes. [1] The model starts with the erosion that follows uplift of land above a base level and ends, if conditions allow, in the formation of a peneplain . [ 1 ]
From the change in diameter of the hole over time, the rate of erosion can thus be plotted against applied hydraulic shear stress and fit to the following equation: [1] [4] = where E r is the rate of erosion over time, k d is the soil erodibility, and τ c is the critical shear stress for erosion.
For example, blending a polymer with another polymer that is very reactive to water will speed up the degradation process and cause surface erosion. On the other hand, decreasing the dimensions of a material will allow water to travel to the center of the material more quickly, which speeds up the diffusion process and causes bulk erosion.
The erosion associated with overland flow may occur through different methods depending on meteorological and flow conditions. If the initial impact of rain droplets dislodges soil, the phenomenon is called rainsplash erosion. If overland flow is directly responsible for sediment entrainment but does not form gullies, it is called "sheet erosion".