Search results
Results From The WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.
If is a subset of a vector space then is said to be a symmetric set if it is symmetric with respect to the additive group structure of the vector space; that is, if =, which happens if and only if . The symmetric hull of a subset S {\displaystyle S} is the smallest symmetric set containing S , {\displaystyle S,} and it is equal to S ∪ − S ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).
In mathematics, the symmetric closure of a binary relation on a set is the smallest symmetric relation on that contains .. For example, if is a set of airports and means "there is a direct flight from airport to airport ", then the symmetric closure of is the relation "there is a direct flight either from to or from to ".
This can occur in many ways; for example, if X is a set with no additional structure, a symmetry is a bijective map from the set to itself, giving rise to permutation groups. If the object X is a set of points in the plane with its metric structure or any other metric space , a symmetry is a bijection of the set to itself which preserves the ...
In computer science, in particular in concurrency theory, a dependency relation is a binary relation on a finite domain , [1]: 4 symmetric, and reflexive; [1]: 6 i.e. a finite tolerance relation. That is, it is a finite set of ordered pairs, such that