Search results
Results From The WOW.Com Content Network
The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs ) to Earth.
If the star lies on the main sequence, as determined by its luminosity class, the spectral type of the star provides a good estimate of the star's absolute magnitude. Knowing the apparent magnitude (m) and absolute magnitude (M) of the star, one can calculate the distance (d, in parsecs) of the star using m − M = 5 log ( d / 10 ...
Distance moduli are most commonly used when expressing the distance to other galaxies in the relatively nearby universe.For example, the Large Magellanic Cloud (LMC) is at a distance modulus of 18.5, [2] the Andromeda Galaxy's distance modulus is 24.4, [3] and the galaxy NGC 4548 in the Virgo Cluster has a DM of 31.0. [4]
Stellar parallax is the apparent shift of position of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method.
The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...
The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit. Substituting the star's parallax for the one arcsecond angle in the imaginary ...
Flux decreases with distance according to an inverse-square law, so the apparent magnitude of a star depends on both its absolute brightness and its distance (and any extinction). For example, a star at one distance will have the same apparent magnitude as a star four times as bright at twice that distance.
A galaxy's magnitude is defined by measuring all the light radiated over the entire object, treating that integrated brightness as the brightness of a single point-like or star-like source, and computing the magnitude of that point-like source as it would appear if observed at the standard 10 parsecs distance.