Search results
Results From The WOW.Com Content Network
Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work ; for example, many protein -based molecular motors harness the chemical free energy ...
Synthetic molecular motors are molecular machines capable of continuous directional rotation under an energy input. [2] Although the term "molecular motor" has traditionally referred to a naturally occurring protein that induces motion (via protein dynamics), some groups also use the term when referring to non-biological, non-peptide synthetic motors.
The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a rotaxane with a ring and two different possible binding sites. In 2016 the Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa for the design and synthesis of molecular machines.
Many of these molecular motors are ubiquitous in both prokaryotic and eukaryotic cells, although some, such as those involved with cytoskeletal elements or chromatin, are unique to eukaryotes. The motor protein prestin, [14] expressed in mammalian cochlear outer hair cells, produces mechanical amplification in the cochlea. It is a direct ...
Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. [1]
The term "Brownian motor" was originally invented by Swiss theoretical physicist Peter Hänggi in 1995. [3] The Brownian motor, like the phenomenon of Brownian motion that underpinned its underlying theory, was also named after 19th century Scottish botanist Robert Brown, who, while looking through a microscope at pollen of the plant Clarkia pulchella immersed in water, famously described the ...
Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to ...
Molecular physics is the study of the physical properties of molecules and molecular dynamics. The field overlaps significantly with physical chemistry, chemical physics, and quantum chemistry. It is often considered as a sub-field of atomic, molecular, and optical physics. Research groups studying molecular physics are typically designated as ...