Search results
Results From The WOW.Com Content Network
In those situations, it is useful to use a related quantity called the normalized radar cross-section (NRCS), also known as differential scattering coefficient or radar backscatter coefficient, denoted σ 0 or σ 0 ("sigma nought"), which is the average radar cross-section of a set of objects per unit area:
where Q is the efficiency factor of scattering, which is defined as the ratio of the scattering cross-section and geometrical cross-section πa 2. The term p = 4πa( n − 1)/λ has as its physical meaning the phase delay of the wave passing through the centre of the sphere, where a is the sphere radius, n is the ratio of refractive indices ...
The shooting and bouncing rays (SBR) method in computational electromagnetics was first developed for computation of radar cross section (RCS). [1] Since then, the method has been generalized to be used also for installed antenna performance. The SBR method is an approximate method applied to high frequencies.
The radar frequency is also chosen in order to optimize the radar cross-section (RCS) of the envisioned target, which is frequency-dependent. Examples of propagation windows are the 3 GHz (S), 10 GHz (X), 24 GHz (K), 35 GHz (Ka), 77 GHz (W), 94 GHz (W) propagation windows.
For example, assessing the value of the radar cross section of a plate with the analytical formula: =, where A is the surface of the plate and is the wavelength. The next curve presenting the RCS of a plate computed at 35 GHz can be used as reference example.
The cross-section is the minimum apparent surface area observed in the direction of the radar that must be detectable.. Radar cross section changes with aspect angle. Cross section for anything except a perfect sphere depends upon the aspect angle, which how far the reflector is rotated with respect to the radar pulse.
When it is exactly zero the radar is a monostatic radar, when it is close to zero the radar is pseudo-monostatic, and when it is close to 180 degrees the radar is a forward scatter radar. Elsewhere, the radar is simply described as a bistatic radar. The bistatic angle is an important factor in determining the radar cross section of the target.
For basic considerations of the strength of a signal returned by a given target, the radar equation models the target as a single point in space with a given radar cross-section (RCS). The RCS is difficult to estimate except for the most basic cases, like a perpendicular surface or a sphere.