When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  3. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  4. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  5. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these. Although many of Euclid's results had been stated by earlier mathematicians, [7] Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. [8]

  6. Saccheri quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Saccheri_Quadrilateral

    Saccheri quadrilaterals. A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum.

  7. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid then presents 10 assumptions (see table, right), grouped into five postulates (axioms) and five common notions. [45] [k] These assumptions are intended to provide the logical basis for every subsequent theorem, i.e. serve as an axiomatic system. [46] [l] The common notions exclusively concern the comparison of magnitudes. [48]

  8. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    [1] It is equivalent to Euclid's parallel postulate in the context of Euclidean geometry [2] and was named after the Scottish mathematician John Playfair. The "at most" clause is all that is needed since it can be proved from the first four axioms that at least one parallel line exists given a line L and a point P not on L, as follows:

  9. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Lefschetz theorem on (1,1)-classes (algebraic geometry) Lehmann–Scheffé theorem ; Leray's theorem (algebraic geometry) Leray–Hirsch theorem (algebraic topology) Lerner symmetry theorem ; Lester's theorem (Euclidean plane geometry) Levi's theorem ; Levitzky's theorem (ring theory) Lévy continuity theorem (probability)