Search results
Results From The WOW.Com Content Network
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as (−n) 3 = −(n 3).
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
An important special case is when the index set is , the natural numbers: this Cartesian product is the set of all infinite sequences with the i-th term in its corresponding set X i. For example, each element of ∏ n = 1 ∞ R = R × R × ⋯ {\displaystyle \prod _{n=1}^{\infty }\mathbb {R} =\mathbb {R} \times \mathbb {R} \times \cdots } can ...
By analogy with the square root of x, one can define the (positive) triangular root of x as the number n such that T n = x: [17] = + which follows immediately from the quadratic formula . So an integer x is triangular if and only if 8 x + 1 is a square.
In the escape time algorithm, a repeating calculation is performed for each x, y point in the plot area and based on the behavior of that calculation, a color is chosen for that pixel. The x and y locations of each point are used as starting values in a repeating, or iterating calculation (described in detail below). The result of each ...
The function has positive values at points x inside Ω, it decreases in value as x approaches the boundary of Ω where the signed distance function is zero, and it takes negative values outside of Ω. [1] However, the alternative convention is also sometimes taken instead (i.e., negative inside Ω and positive outside). [2]
A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.