Search results
Results From The WOW.Com Content Network
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 [ 1 ] culminating in his 1788 ...
Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
The basic principle of Lagrangian mechanics, the principle of stationary action, is that an object subjected to outside influences will "choose" a path which makes a certain quantity, the action, an extremum. The action is a functional, a mathematical relationship which takes an entire path and produces a single number.
[4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5] In this book Lagrange starts with the Lagrangian specification but later converts them into the Eulerian specification. [5]
The Lagrangian for a scalar field moving in a potential () can be written as = = =! It is not at all an accident that the scalar theory resembles the undergraduate textbook Lagrangian = for the kinetic term of a free point particle written as = /. The scalar theory is the field-theory generalization of a particle moving in a potential.
The solution can be related to the system Lagrangian by an indefinite integral of the form used in the principle of least action: [5]: 431 = + Geometrical surfaces of constant action are perpendicular to system trajectories, creating a wavefront-like view of the system dynamics. This property of the Hamilton–Jacobi equation connects ...
For example, renormalization in QED modifies the mass of the free field electron to match that of a physical electron (with an electromagnetic field), and will in doing so add a term to the free field Lagrangian which must be cancelled by a counterterm in the interaction Lagrangian, that then shows up as a two-line vertex in the Feynman diagrams.