When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    For example, the first Napoleon point is the point of concurrency of the three lines each from a vertex to the centroid of the equilateral triangle drawn on the exterior of the opposite side from the vertex. A generalization of this notion is the Jacobi point. The de Longchamps point is the point of concurrence of several lines with the Euler line.

  3. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

  4. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  5. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let l 1 = [a 1, b 1, c 1] and l 2 = [a 2, b 2, c 2] be a pair of distinct lines. Then the intersection of lines l 1 and l 2 is point a P = (x 0, y 0, z 0) that is the simultaneous solution (up to a scalar factor) of the system of linear equations: a 1 x + b 1 y + c 1 z = 0 and a 2 x + b 2 y + c 2 z = 0. The solution of this system gives: x 0 ...

  6. Geometrical continuity - Wikipedia

    en.wikipedia.org/wiki/Geometrical_continuity

    The basic idea behind geometric continuity was that the five conic sections were really five different versions of the same shape. An ellipse tends to a circle as the eccentricity approaches zero, or to a parabola as it approaches one; and a hyperbola tends to a parabola as the eccentricity drops toward one; it can also tend to intersecting lines.

  7. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    The two circles in the Two points, one line problem where the line through P and Q is not parallel to the given line l, can be constructed with compass and straightedge by: Draw the line m through the given points P and Q. The point G is where the lines l and m intersect; Draw circle C that has PQ as diameter. Draw one of the tangents from G to ...

  8. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  9. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  1. Related searches compounded continuously problems examples in real life about intersecting lines

    intersection geometry problemstwo lines intersect