Search results
Results From The WOW.Com Content Network
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [ 1 ] and used by him to prove the parabolic form of projectile motion.
The surface of the projectile also must be considered: a smooth projectile will face less air resistance than a rough-surfaced one, and irregularities on the surface of a projectile may change its trajectory if they create more drag on one side of the projectile than on the other. However, certain irregularities such as dimples on a golf ball ...
A projectile following a ballistic trajectory has both forward and vertical motion. Forward motion is slowed due to air resistance, and in point mass modeling the vertical motion is dependent on a combination of the elevation angle and gravity. Initially, the projectile is rising with respect to the line of sight or the horizontal sighting plane.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The paraboloid of revolution obtained by rotating the safety parabola around the vertical axis is the boundary of the safety zone, consisting of all points that cannot be hit by a projectile shot from the given point with the given speed.
Assume the motion of the projectile is being measured from a free fall frame which happens to be at (x,y) = (0,0) at t = 0. The equation of motion of the projectile in this frame (by the equivalence principle ) would be y = x tan ( θ ) {\displaystyle y=x\tan(\theta )} .
In projectile motion the most important force applied to the ‘projectile’ is the propelling force, in this case the propelling forces are the muscles that act upon the ball to make it move, and the stronger the force applied, the more propelling force, which means the projectile (the ball) will travel farther. See pitching, bowling.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...