Search results
Results From The WOW.Com Content Network
Erythropoiesis (from Greek 'erythro' meaning "red" and 'poiesis' "to make") is the process which produces red blood cells (erythrocytes), which is the development from erythropoietic stem cell to mature red blood cell. [1] It is stimulated by decreased O 2 in circulation, which is detected by the kidneys, which then secrete the hormone ...
Erythropoietin (/ ɪ ˌ r ɪ θ r oʊ ˈ p ɔɪ. ɪ t ɪ n,-r ə-,-p ɔɪ ˈ ɛ t ɪ n,-ˈ iː t ɪ n /; [1] [2] [3] EPO), also known as erythropoetin, haematopoietin, or haemopoietin, is a glycoprotein cytokine secreted mainly by the kidneys in response to cellular hypoxia; it stimulates red blood cell production (erythropoiesis) in the bone marrow.
Erythropoiesis is the process by which new red blood cells are produced; it lasts about 7 days. Through this process red blood cells are continuously produced in the red bone marrow of large bones. (In the embryo, the liver is the main site of red blood cell production.)
The number of reticulocytes, immature red blood cells, gives an estimate of the rate of erythropoiesis. Lymphocytes are the cornerstone of the adaptive immune system. They are derived from common lymphoid progenitors. The lymphoid lineage is composed of T-cells, B-cells and natural killer cells. This is lymphopoiesis.
In the process of erythropoiesis (red blood cell formation), reticulocytes develop and mature in the bone marrow and then circulate for about a day in the blood stream before developing into mature red blood cells. Like mature red blood cells, in mammals, reticulocytes do not have a cell nucleus.
Erythropoiesis – process of creating red blood cells; Hemolytic anemia – reduced number of red blood cells due to destruction of the cells after they were made; Nutritional anemia – reduced number of red blood cells due to vitamin deficiency or other dietary factors; Spherocytosis- the shape of red blood cell becomes spherical than bi ...
Megakaryocyte–erythroid progenitor cells must commit to becoming either platelet-producing megakaryocytes via megakaryopoiesis or erythrocyte-producing erythroblasts via erythropoiesis. [2] [3] Most of the blood cells produced in the bone marrow during hematopoiesis come from megakaryocyte–erythroid progenitor cells. [4]
CFU-E is a stage of erythroid development between the BFU-E stage and the pro-erythroblast stage. CFU-E colony assay is designed to detect how many colony-forming-units of erythroid lineage there are in a hematopoietic tissue (bone marrow, spleen, or fetal liver), which may be reflective of the organism’s demand for oxygen delivery to the tissues or a hematopoietic disorder.