Search results
Results From The WOW.Com Content Network
Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.
In a multistep reaction, the rate-determining step does not necessarily correspond to the highest Gibbs energy on the reaction coordinate diagram. [ 8 ] [ 6 ] If there is a reaction intermediate whose energy is lower than the initial reactants, then the activation energy needed to pass through any subsequent transition state depends on the ...
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle , a principle that says that the observable universe is ...
Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt ...
A diagram showing the relationship for flow depth (y) and total Energy (E) for a given flow (Q). Note the location of critical flow, subcritical flow, and supercritical flow. The energy equation used for open channel flow computations is a simplification of the Bernoulli Equation (See Bernoulli Principle ), which takes into account pressure ...
Steady-states can be stable or unstable. A steady-state is unstable if a small perturbation in one or more of the concentrations results in the system diverging from its state. In contrast, if a steady-state is stable, any perturbation will relax back to the original steady state. Further details can be found on the page Stability theory.
In the theory of dynamical systems and control theory, a linear time-invariant system is marginally stable if it is neither asymptotically stable nor unstable.Roughly speaking, a system is stable if it always returns to and stays near a particular state (called the steady state), and is unstable if it goes further and further away from any state, without being bounded.